
“Software Development”

Job Cluster

This material is based upon work supported by the National Science Foundation under Grant No. 1838535. Any

opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Science Foundation.

Acknowledgements

The development and publication of these skill standards has been a joint and collaborative effort

between business and industry representatives and the education community. We are grateful to the

industry personnel who participated in the development and validation process. Industry subject matter

experts, technical executives, supervisors and technicians donated their time and effort to assure the

relevancy of the standards 12 to 36 months into the future.

We gratefully acknowledge funding from the National Science Foundation and the leadership by

the team on the IT Skill Standards 2020 and Beyond grant, based at Collin College.

Our leaders are strategically divided into Central, Western, and Eastern teams.

Central

Dr. Ann Beheler, Principal Investigator

Christina Titus, Program Director

Deborah Roberts, Co-Principal Investigator

Helen Sullivan, Senior Staff

West Coast

Terryll Bailey, Co-Principal Investigator

Dr. Suzanne Ames, Co-Principal Investigator

East Coast

Peter Maritato, Co-Principal Investigator

Gordon Snyder, Senior Staff

Software Development

The definition for Software Development as developed by approximately 100 Thought Leaders (mostly
Chief Technology Officers and Chief Information Officers) through three meetings and follow-up surveys
to gain consensus is:

Software development and engineering includes the research, design, secure creation, delivery and
quality assurance/testing of computer software and applications including mobile. Additionally, web
development can range from developing a simple single static page of plain text to complex web-
based internet applications (web apps), and social network services. This definition was adapted
from Wikipedia with input from national IT Thought Leaders.

This packet includes…

Job skills as developed by subject matter experts (SMEs) via multiple synchronous meetings (Page 3).

The tasks, knowledge, skills and abilities (KSAs) were developed with a focus 12 to 36 months in the
future for an entry-level employee working in that specific cluster.

More specific definitions can be found within the KSA list.

The average was calculated from the subject matter expert votes.

• A vote of "4" indicated the item must be covered in the curriculum.
• A vote of "3" indicated the item should be covered in the curriculum.
• A vote of "2" indicated that it would be nice for the item to be covered in the curriculum.
• A vote of "1" indicated the item should not be covered in the curriculum.

Employability Skills as developed by SMEs via multiple synchronous meetings (Page 7).

Employability competencies are essential for every IT job and are based on what the work requires.
SMEs were offered three clearly-defined “levels of proficiency” for each employability skill. The
proficiency scale is defined as Level 1 - basic; Level 2 - intermediate; and Level 3 - advanced. The levels
are cumulative, so a “Level 3” assumes the employee can perform all characteristics of “Level 1” and
“Level 2.”

For each employability skill, SMEs selected the competency levels that best aligned with what would be
expected from an entry-level worker for the job cluster in question.

Key Performance Indicators (KPIs) as developed by SMEs (Page 8).

Key Performance Indicators answer the question, “How do we know when a task is performed well?”

A search was performed to locate validated/verified KPIs for technician level work in IT fields. Sources
included the Texas Skill Standards System, National Skill Standards Board, National Institute of Standards
and Technology and other sources. The identified KPIs were then cross-referenced to the tasks for the
ITSS 2020 job clusters. They were reviewed and revised by a group of the same subject matter experts
who developed the tasks and KSAs for the cluster in a structured, facilitated verification session.

itskillstandards.org

1

file://Instructional/I/ITSS%202020/Final%20Products%20Posted/Data%20Analytics/itskillstandards.org

Student Learning Outcomes (SLOs) as identified by educators attending the KSA meetings (Page
10).

The SLOs are for use in the creation of curriculum to help define what the students will know and be
able to demonstrate. Each of these SLOs can be observed, measured, and demonstrated.

2

Software Development KSAs
AVG

T-1 3.0

3.0

T-3
Analyze information to determine, recommend, and plan development and installation of a new system
or modification of an existing system. 2.8

T-4 2.9

T-5 3.2

T-6 Develop code to read and write files. 3.3
T-7 Create webpages using data from a database. 3.5
T-8 Create applications such as Servlets that send HTML pages to Internet clients. 3.0
T-9 Write and debug effective code using various scripting languages. 3.7

T-10 Assist with development on multiple platforms (e.g. Linux, Windows, AppleOS, etc.). 3.0
T-11 Design, develop and validate stable, robust, secure, and efficient code following industry best practices. 3.5
T-12 Develop secure code and error handling. 3.6

T-13
Develop cross-platform applications targeted for an OS or hardware different from the development
machine. 2.9

T-14 Develop applications that run on multiple browsers. 3.3
T-15 Design, create, manage, and evaluate Apps. 2.9
T-16 Manipulate the objects contained in the Document Object Model (DOM). 2.9
T-17 Demonstrate familiarity with at least one current IDE and other developer productivity tools. 3.6

T-18 Identify, evaluate, and apply efficient algorithms and data structures (e.g. sorting, multithreading). 3.3
T-19 Apply SDLC (software development lifecycle) industry practices (e.g. Agile, waterfall, scrum, etc.). 3.5

T-20
Enable applications with public keying by leveraging existing public key infrastructure (PKI) libraries and
incorporating certificate management and encryption functionalities when appropriate. 2.8

T-21
Identify and leverage the enterprise-wide security services while designing and developing secure
applications (e.g., Enterprise PKI, Federated Identity server) when appropriate. 2.6

T-22
Assist in designing countermeasures and mitigations against potential exploitations of programming
language weaknesses and vulnerabilities in system and elements. 2.7

T-23

Apply secure code documentation in accordance with corporate policy to ensure safety of how code is
implemented or processed for user access and security access to code that govern software driven
apparatus. 2.9

T-24
Compile and write documentation of existing software program development and subsequent revisions,
inserting comments in the coded instructions so others can understand the program. 3.5

T-25
Identify and leverage the enterprise-wide version control system while designing and developing secure
applications. 3.4

T-26
Collaborate with a wide range of technical professionals, in person and virtually, using tools and strategies
that support cooperative software development practices. 3.5

T-27
Conduct trial runs of programs and software applications to ensure that the desired information is
produced and instructions and security levels are correct. 3.4

T-28 Test and evaluate any software code/processes you developed - unit testing. 3.8
T-29 Utilize software testing tools to implement various test strategies. 3.4

Tasks
SPECIFIC THINGS an entry level person would BE EXPECTED TO PERFORM on the job WITH LITTLE SUPERVISION.

Analysis and Design

Programming

Testing

3

T-2 Identify, document and effectively communicate security concerns and/or threat vulnerabilities.

Identify and analyze user needs and use needs to establish a plan in the selection, creation, evaluation,
implementation and administration of information technology systems.

Prepare detailed interface diagrams that describe input, output, and logical operation, and convert
them into a series of instructions coded in a computer language. (This statement is agnostic with
respect to specific technology or tool.)

Translate security requirements into application design elements including documenting the elements of
the software attack surfaces, conducting threat modeling, and defining any specific security criteria.

T-30 Perform integrated quality assurance testing for security functionality and resiliency attack. 3.0

T-31

Identify security implications in the software acceptance phase including completion criteria, risk
acceptance and documentation, common criteria, and methods of independent testing and report concerns
to IT/software team. 2.7

T-32 Assist in developing software system testing and validation procedures, programming, and documentation. 3.4

T-33
Correct errors by making appropriate changes and rechecking the program to ensure that desired results
are produced. 3.7

T-34
Apply coding and testing standards, security testing tools including "'fuzzing" static-analysis code scanning
tools, and conduct code reviews. 2.9

T-35 Determine system performance against standards and follow appropriate action plan when issues arise. 3.0

T-36
Implement and properly document software patches and report any software security issues that would
leave software vulnerable. 2.9

T-37
Modify existing software to correct errors, adapt it to new hardware, or upgrade interfaces and improve
performance. 3.2

T-38
Develop presentation materials/presentations and effectively present to a technical/non-technical
audience. 2.7

T-39
Communicate with customers or other departments on project status, proposals, or technical issues, such
as software system design or maintenance, including both oral and written communication. 3.2

T-40
Contribute to team, follow directives from designers and engineers related to software design and
implementation. 3.3

K-1 Knowledge of software development models (e.g. Waterfall Model, Spiral Model). 3.4

K-2
Knowledge of system design tools, methods, and techniques, including automated systems analysis and
design tools. 3.2

K-3 Knowledge of effective software debugging principles. 3.8
K-4 Knowledge of computer programming languages and principles in general. 3.9

K-5
Knowledge of web services (e.g. service-oriented architecture, Simple Object Access Protocol, and web
service description language). 3.5

K-6 Knowledge of UML documents that model a program. 2.7

K-7
Knowledge of how programs communicate across the Internet using conventions such as Remote Method
Invocation. 3.0

K-8
Knowledge of Software Integration Management Systems – how industry documents final product builds to
show all of the elements that have changes and checks those that have not changed. 2.8

K-9 Knowledge of event handling in a GUI. 3.2
K-10 Knowledge of Regression Testing Development – how to test software using software. 3.3
K-11 Knowledge of the appropriate use of cookies. 3.2

K-12
Knowledge of how applets differ from applications in terms of program form, operating context, and how
they are started. 2.7

K-13
Knowledge of two or more operating systems that are current industry standards (e.g. Linux, Windows
Apple OS). 3.2

K-14 Knowledge of error handling constructs. 3.5
K-15 Knowledge of the differences between client-side scripting and server-side scripting. 3.6
K-16 Knowledge of block chain processes and practices. 2.3

K-17
Knowledge of common program architectures (e.g. standalone, three-tier, web-based, cloud-based,
serverless, microservice). 3.4

K-18 Knowledge of the local development cycle (e.g. build, deploy, test, debug). 3.9
K-19 Knowledge of server software patterns, messaging patterns both async and synch. 2.7

Knowledge
Knowledge focuses on the understanding of concepts. It is theoretical. An individual may have an understanding of a topic or

tool or some textbook knowledge of it but have no experience applying it. For example, someone might have read hundreds of
articles on health and nutrition, many of them in scientific journals, but that doesn't make that person qualified to dispense

advice on nutrition.

Implementation

4

K-20 Knowledge of Enterprise application integration software. 2.3
K-21 Knowledge of database integration/management software. 3.2
K-22 Knowledge of AI and ML methods and algorithms. 2.5
K-23 Knowledge of software collaboration tools (e.g. version control, bug tracking, continuous integration). 3.7
K-24 Knowledge of continuous automation and production deployment practices. 3.2
K-25 Knowledge of cybersecurity and privacy principles and methods that apply to software development. 3.5

K-26

Knowledge of system and application security threats and vulnerabilities (e.g. buffer overflow, mobile code,
cross-site scripting, Procedural Language/Structured Query Language [PL/SQL] and injections, race
conditions, covert channel, replay, return-oriented attacks, malicious code). 3.2

K-27 Knowledge of code security (e.g. hashing, encryption, cryptography, threat modeling). 3.1
K-28 Knowledge of Privacy Impact Assessments in terms of privacy and identity management. 2.7
K-29 Knowledge of risk management framework and processes (e.g. methods for assessing and mitigating risk). 2.8
K-30 Knowledge of cyber threats and vulnerabilities. 3.1

K-31
Knowledge of software related information technology (IT) security principles and methods (e.g.
modularization, layering, abstraction, data hiding, simplicity/minimization). 3.1

K-32 Awareness of standards such as PCI, PHI, and GDPR. 2.4

K-33
Knowledge of basic security practices including threats and vulnerabilities that may arise from interactions
with other systems, external and legacy code. 2.8

K-34
Knowledge of computer network fundamentals (e.g. TCP/IP, HTTPS, ports, firewall, LAN/WAN, etc.)
and network security methodologies. 2.9

K-35
Knowledge of implementation and utilization of cloud services including deployment (e.g. AWS, Microsoft
Azure). 3.0

K-36 Knowledge of implementing edge-cloud software controls and services. 3.4

K-37
Knowledge of software development and implementation for communicating and gathering data from IoT
devices. 3.0

K-38 Knowledge of the difference between AI and ML. 2.7
K-39 Awareness of current and specialized AI and ML tools and their application to business problems. 2.1
K-40 Conceptual knowledge of PKI. 3.3
K-41 Knowledge of DevSecOps. 2.6
K-42 Knowledge of structure and unstructured data sources. 3.6
K-43 Knowledge of open source software. 3.1
K-44 Knowledge of ethics and its application to software development. 3.4
K-45 Knowledge of best practices for Design/UI/UX/accessibility as applied to software development. 3.0
K-46 Knowledge of lifecycle development/steady state/end of life. 3.0
K-47 Knowledge of mobile application development. 2.7
K-48 Knowledge of how to protect data privacy through code. 3.0

K-49

Knowledge of process flow and how the upgrade/implementation of software is accomplished through
definitive understanding of team collaboration in DevOps, End of Life Cycle, and including importance of
foundational security. 3.0

S-1
Skill in using built-in functions as well as skill in creating custom functions, subroutines, and procedures
within software using scripting languages. 3.6

Skills
The capabilities or proficiencies developed through training or hands-on experience. Skills are the practical application of

theoretical knowledge. Someone can take a course on investing in financial futures, and therefore has knowledge of it. But
getting experience in trading these instruments adds skills.

5

S-2 Skill in integrating standard object model components with server pages. 3.2
S-3 Skill in conducting software debugging. 3.8

S-4
Skill in creating programs that validate and process multiple inputs including command line arguments,
environmental variables, and input streams. 3.4

S-5
Skill in writing code in a currently supported programming language (e.g. scripting, Java, C++, Linux, Ruby
or current languages). 3.8

S-6
Skill in developing applications that can log and handle errors, exceptions, and application faults and
logging. 3.4

S-7 Skill in applying root cause analysis (RCA) techniques to solving software/customer issues. 3.1
S-8 Skill in the live production environment (e.g. monitoring, logging, alerting, remote debugging). 3.0

S-9
Skill in using electronic mail software (e.g. Google Gmail; IBM Notes Hot technology; Microsoft Exchange
Server Hot technology; Microsoft Outlook Hot technology). 2.8

S-10
Skill in using graphical user interface development software (e.g. Graphical user interface GUI builder
software; Graphical user interface GUI design software; Salesforce Visualforce Hot technology). 2.7

S-11
Skill in using object or component oriented development software (e.g. C++ Hot technology; Document
Object Model DOM Scripting; Python Hot technology; Simple API for XML SAX). 3.1

S-12 Skill in creating classes that use inheritance aspects of the object-oriented paradigm. 3.2
S-13 Skill in using, incorporating and utilizing cookies. 2.8
S-14 Skill in implementing programs that use local or remote databases with standard protocols. 3.5
S-15 Skill in using a scripting language on the server side and the client side of a distributed program. 3.4
S-16 Skill in evaluating and reporting software needs, constraints, analysis for application-specific concerns. 3.0
S-17 Skill in implementing levels of security in distributed software applications and applets. 2.8

S-18
Skill in deploying secure software according to secure software deployment methodologies, tools, and
practices. 3.1

S-19 Skill in designing software applications that are accessible by a variety of wireless and wired devices. 3.0
S-20 Skills such as time management, risk management. 3.3
S-21 Skill in incorporating user experience feedback into software. 3.0
S-22 Skill in integrating third party open source resources into software. 2.7
S-23 Skill in learning new and/or industry standard tools involved in the development of software. 3.6

A-1 Ability to both mentor and be mentored, provide critical feedback as well as accept critical feedback. 3.5

A-2 Ability to comprehend and execute both written and oral instructions by asking clarifying questions. 3.9

A-3
Ability to effectively communicate technical concepts and constraints in written and oral form to technical
team members, stakeholders. 3.7

A-4
Ability to work effectively in multi-disciplinary teams to apply information technology in support of
organizational goals. 3.6

A-5 Ability to write technical documentation for technical and nontechnical audiences. 3.2

A-6
Ability to manage your own software development project activities and deliverables in a timely and
efficient manner. 3.4

A-7
Ability to work on team projects and demonstrate critical thinking, teamwork, oral communications, inter-
cultural appreciation, and technical and information literacy skills. 3.9

A-8 Ability to research and be able to find other sources to answer the problem. 3.6
A-9 Ability to engage with users and understand their user experience. 3.3

A-10 Ability to draw on prior knowledge and experience in a new situation. 3.6

Abilities
Abilities have historically been used to describe the innate traits or talents that a person brings to a task or situation. Many
people can learn to negotiate competently by acquiring knowledge about it and practicing the skills it requires. A few are

brilliant negotiators because they have the innate ability to persuade. In reality, abilities may be included under skills or may be
separated out.

6

Software Development Employability Skills

Workplace
Professionalism
& Work Ethics

Level 1 - Employee learns expectations of workplace environment (professional behavior and ethics) and
adheres to practices with some guidance.
Level 2 - Employee exhibits sound professionalism, judgment, and integrity and accepts responsibility for own
behavior. Employee exhibits these qualities without guidance but occasionally refers to policies as needed.

Written
Communication

Level 1 - Employee understands written instructions and executes tasks with guidance and feedback from
supervisor. Employee clearly communicates concepts in writing.
Level 2 - Employee comprehends and executes written instructions with minimal guidance. Employee composes
well-organized written documents.

Oral
Communication

Level 1 - Employee understands oral instructions and executes tasks with guidance and feedback from
supervisor. Employee communicates concepts orally while clarifying for meaning. Employee develops listening
skills.
Level 2 - Employee comprehends and executes oral instructions with minimal guidance and exhibits good
listening skills. Employee clarifies for meaning without needing prompting from supervisor.

Teamwork

Level 1 - With guidance and feedback from supervisor, employee obeys team rules and understands team
member roles. Employee actively participates in team activities, volunteers for special tasks, and establishes
rapport with co-workers.
Level 2 - Employee demonstrates commitment, enthusiasm and supports team members. Employee follows up
on assigned tasks and leads by example.

Problem
Solving &

Critical
Thinking

Level 1 - Employee identifies the problem and relevant facts and principles with guidance and feedback from
supervisor. Employee summarizes existing ideas and demonstrates creative thinking process while problem
solving.
Level 2 - With minimal supervision, employee analyzes underlying causes, considers risks and implications, and
uses logic to draw conclusions. Employee applies rules and principles to processes and recommends solutions.

Organization
and Planning

Level 1 - Employee prepares schedule for self, monitors and adjusts task sequence, and analyzes work
assignments with guidance from supervisor.
Level 2 - Employee manages timelines and recommends timeline adjustments. Employee escalates timeline-
impacting issues as appropriate.

Adaptability
and Flexibility

Level 1 - With guidance and feedback from supervisor, employee is able to adjust ways of doing work based on
changing dynamics. Working under pressure is difficult, but employee makes it through the project with
guidance and oversight.
Level 2 - Employee makes inquiries of co-workers regarding possible changes needed in ways of doing work and
adapts accordingly. Observes co-workers increasing work productivity under pressure and follows their lead.

Initiative
Level 1 - Employee finishes a step in a project and waits for direction before going on to the next step.
Level 2 - Employee finishes multiple steps in a project and appropriately begins working on the next step
without being asked.

Accuracy
Level 1 - Employee makes mistakes routinely but is committed to learning to adjust work habits to prevent them
in the future.
Level 2 - Employee occasionally makes mistakes but quickly makes adjustments to work habits to avoid making
the same mistake twice.

Cultural
Competence

Level 1 - Employee is inexperienced with working with diverse teams. With support and guidance and getting to
know team members, employee develops working relationships.
Level 2 - Employee is committed to working with diverse teams but struggles when differences arise. Employee
identifies those challenges and works with colleagues to find ways to work effectively.

Self and Career
Development

Level 1 - Employee requires feedback and direction from supervisor regarding improvement needed in
professional and technical skills. Employee follows through with skills development with monitoring by
supervisor.
Level 2 - Employee builds upon self-assessment experience and can develop a professional and technical skills
improvement plan in conjunction with supervisor. Employee completes development plan without prompting
from supervisor.

7

Tasks Key Performance Indicators

T-1
Identify and analyze user needs and use needs to establish a plan in the
selection, creation, evaluation, implementation and administration of
information technology systems.

T-2
Identify, document and effectively communicate security concerns and/or
threat vulnerabilities.

T-3
Analyze information to determine, recommend, and plan development and
installation of a new system or modification of an existing system.

T-4
Translate security requirements into application design elements including
documenting the elements of the software attack surfaces, conducting threat
modeling, and defining any specific security criteria.

T-5

Prepare detailed interface diagrams that describe input, output, and logical
operation, and convert them into a series of instructions coded in a computer
language. (This statement is agnostic with respect to specific technology or
tool.)

T-6 Develop code to read and write files.
T-7 Create webpages using data from a database.

T-8
Create applications such as Servlets that send HTML pages to Internet clients.

T-9 Write and debug effective code using various scripting languages.

T-10
Assist with development on multiple platforms (e.g. Linux, Windows, AppleOS,
etc.).

T-11
Design, develop and validate stable, robust, secure, and efficient code following
industry best practices.

T-12 Develop secure code and error handling.

T-13
Develop cross-platform applications targeted for an OS or hardware different
from the development machine.

T-14 Develop applications that run on multiple browsers.
T-15 Design, create, manage, and evaluate Apps.
T-16 Manipulate the objects contained in the Document Object Model (DOM).

T-17
Demonstrate familiarity with at least one current IDE and other developer
productivity tools.

T-18
Identify, evaluate, and apply efficient algorithms and data structures (e.g.
sorting, multithreading).

T-19
Apply SDLC (software development lifecycle) industry practices (e.g. Agile,
waterfall, scrum, etc.).

T-20
Enable applications with public keying by leveraging existing public key
infrastructure (PKI) libraries and incorporating certificate management and
encryption functionalities when appropriate.

T-21
Identify and leverage the enterprise-wide security services while designing and
developing secure applications (e.g., Enterprise PKI, Federated Identity server)
when appropriate.

T-22
Assist in designing countermeasures and mitigations against potential
exploitations of programming language weaknesses and vulnerabilities in
system and elements.

T-23
Apply secure code documentation in accordance with corporate policy to
ensure safety of how code is implemented or processed for user access and
security access to code that govern software driven apparatus.

T-24
Compile and write documentation of existing software program development
and subsequent revisions, inserting comments in the coded instructions so
others can understand the program.

T-25
Identify and leverage the enterprise-wide version control system while
designing and developing secure applications.

T-26
Collaborate with a wide range of technical professionals, in person and virtually,
using tools and strategies that support cooperative software development
practices.

Software Development Key Performance Indicators
For the entry-level employee, all tasks are typically done under supervision for much of the first year and then with some independence with verification after the
employee has more experience. All tasks are done according to company guidelines.

Analysis & Design

Complete set of requirements, including security concerns and/or threat
vulnerabilities is communicated to and approved by client/user and properly
documented.
Requirements are properly understood, interpreted and evaluated, and
conflicting requirements are identified and resolved.
Time, technology and resource constraints are defined, alternatives are
presented, and risk analysis and contingency plans are developed.
Security requirements are consistent with company standards and all applicable
laws and regulations.
Security requirements are correctly translated into application design elements.
Analysis of new and existing software security concerns and/or threat
vulnerabilities are provided to IT/software team to guide
development/modification of a security application.

Programming

Code is developed and documented using efficient software design processes.
Links between web application and associated databases are properly
established.
Applications performance meets requirements and expectations on all applicable
platforms and browsers.
Appropriate debugging tools are used in an efficient manner.
High-quality software of multiple types is produced that meets or exceeds
customer expectations, follows industry best practices, and is completed within
enigneering time and cost estimates.
Application, programming or communication errors and security vulnerabilities
are correctly anticipated, detected and resolved.
Authoring, modifying, compiling, deploying and debugging of software are
completed in a thorough and efficient manner.
Programs are written in the most efficient way, and data is organized in such a
way that it can be updated, deleted, retrieved efficiently, and securely protected.
Software is deployed in accordance with secure software deployment
methodologies, tools, documentation, and other practices.
Counter measures and mitigations produce a reduction in threats and
vulnerabilities.
Documentation is clear and complete, including consistent use of enterprise-wide
version control.
The appropriate Integrated Development Environment is used in code creation.
SDLC industry practices as specified by the company are consistently followed.
Cooperative software development practices are utilized.
Applications are enabled with PKI as appropriate.

8

T-27
Conduct trial runs of programs and software applications to ensure that the
desired information is produced and instructions and security levels are correct.

T-28 Test and evaluate any software code/processes you developed - unit testing.

T-29 Utilize software testing tools to implement various test strategies.

T-30 Perform integrated quality assurance testing for security functionality and
resiliency attack.

T-31

Identify security implications in the software acceptance phase including
completion criteria, risk acceptance and documentation, common criteria, and
methods of independent testing and report concerns to IT/software team.

T-32 Assist in developing software system testing and validation procedures,
programming, and documentation.

T-33 Correct errors by making appropriate changes and rechecking the program to
ensure that desired results are produced.

T-34
Apply coding and testing standards, security testing tools including "'fuzzing"
static-analysis code scanning tools, and conduct code reviews.

T-35
Determine system performance against standards and follow appropriate action
plan when issues arise.

T-36
Implement and properly document software patches and report any software
security issues that would leave software vulnerable.

T-37
Modify existing software to correct errors, adapt it to new hardware, or
upgrade interfaces and improve performance.

T-38
Develop presentation materials/presentations and effectively present to a
technical/non-technical audience.

T-39
Communicate with customers or other departments on project status,
proposals, or technical issues, such as software system design or maintenance,
including both oral and written communication.

T-40
Contribute to team, follow directives from designers and engineers related to
software design and implementation.

Testing

Unit testing is accomplished using standard testing procedures, and testing on
each unit is repeated until the unit is free of errors.
Integrated testing is accomplished using standard testing procedures and test
cases.
Appropriate software testing tools are used.
Testing identifies errors, gaps or missing requirements, and results in reliability,
security and high performance.
Errors identified during testing are corrected and code is retested until no errors
are identified.
A systematic testing program is implemented that is relevant to application and
test requirements and is in compliance with legal requirements, policies,
procedures and customer requirements.
Code reviews are performed in a regular and timely manner.

Implementation

Software upgrades and patches are applied with minimal service disruptions to
clients/users in a timely manner.
Software performance is monitored to determine need for modifications to meet
design specs and client/user requirements.
Software is modified on an on-going basis to adapt to hardware and software
changes.
Recommendations based on customer input and analysis of system data are
developed and presented to key personnel.
Client/users are informed regarding requirements and technology.
Effective presentations are used to communicate both internally and externally.
Team members collaborate and follow design and implementation guidelines
provided.

9

Student Learning Outcomes

K-24 Knowledge of continuous automation and production deployment practices.
Describe the tools and techniques used for automation in the integration and
deployment of software systems.

K-22 Knowledge of AI and ML methods and algorithms.
K-38 Knowledge of the difference between AI and ML.

K-39
Awareness of current and specialized AI and ML tools and their application to
business problems.

Recognize current and specialized AI and ML tools to solve business problems.

K-17
Knowledge of common program architectures (e.g. standalone, three-tier, web-
based, cloud-based, serverless, microservice).

Describe common application architectures.

K-16 Knowledge of block chain processes and practices. Explain blockchain and its underlying technologies and practices.

K-35
Knowledge of implementation and utilization of cloud services including
deployment (e.g. AWS, Microsoft Azure).

Describe tools, techniques, and frameworks provided by cloud vendors to
support software development.

K-36 Knowledge of implementing edge-cloud software controls and services.
 Explain how edge computing strategies can be applied to enhance the use of
cloud services.

K-5
Knowledge of web services (e.g. service-oriented architecture, Simple Object
Access Protocol, and web service description language).

K-11 Knowledge of the appropriate use of cookies.

K-25
Knowledge of cybersecurity and privacy principles and methods that apply to
software development.

Explain information security principles and fundamentals which apply to
software development.

K-30 Knowledge of cyber threats and vulnerabilities.

K-33
Knowledge of basic security practices including threats and vulnerabilities that
may arise from interactions with other systems, external and legacy code.

K-32 Awareness of standards such as PCI, PHI, and GDPR.
Describe laws, regulations and standards related to cybersecurity and privacy
globally.

K-27
Knowledge of code security (e.g. hashing, encryption, cryptography, threat
modeling).

K-40 Conceptual knowledge of PKI.

K-37
Knowledge of software development and implementation for communicating
and gathering data from IoT devices.

Describe the process of gathering data from IoT devices connectivity for
software development and implementation.

K-42 Knowledge of structure and unstructured data sources. Describe how to access data from different types of data sources.
K-21 Knowledge of database integration/management software. Discuss database integration tools and techniques for software management.
K-3 Knowledge of effective software debugging principles. Describe tools and techniques used to debug software applications.

K-19
Knowledge of server software patterns, messaging patterns both async and
synch.

Describe common software design patterns and the characteristics of the
applications which implement them.

K-45
Knowledge of best practices for Design/UI/UX/accessibility as applied to
software development.

Define UI, UX, and accessibility and describe best practices for incorporating
them in a software system design.

K-15
Knowledge of the differences between client-side scripting and server-side
scripting.

Describe the differences between client-side and server-side scripting in
software development.

K-49

Knowledge of process flow and how the upgrade/implementation of software is
accomplished through definitive understanding of team collaboration in
DevOps, End of Life Cycle, and including importance of foundational security.

Describe DevSecOps as it relates to DevOps and the secure software
development life cycle.

K-6 Knowledge of UML documents that model a program.

K-8
Knowledge of Software Integration Management Systems – how industry
documents final product builds to show all of the elements that have changes
and checks those that have not changed.

K-20 Knowledge of Enterprise application integration software.
Discuss tools, techniques, and frameworks for integrating the components of an
Enterprise application.

K-44 Knowledge of ethics and its application to software development.
Describe ethical concerns in software development, authoritative references for
ethical standards in software development, and how decisions can be made
using ethical reasoning.

K-7
Knowledge of how programs communicate across the Internet using
conventions such as Remote Method Invocation.

Describe protocols used for software which operates across a network.

K-14 Knowledge of error handling constructs. Describe how constructs are used to handle errors in software.

K-4 Knowledge of computer programming languages and principles in general.
List commonly used programming languages and general concepts that are
common to these languages.

K-12
Knowledge of how applets differ from applications in terms of program form,
operating context, and how they are started.

Explain the differences between applets and applications.

K-47 Knowledge of mobile application development.
Describe tools, techniques, and frameworks used for mobile application
development.

K-34
Knowledge of computer network fundamentals (e.g. TCP/IP, HTTPS,
ports, firewall, LAN/WAN, etc.) and network security methodologies.

Describe network concepts which apply to software design and
implementation.

K-13
Knowledge of two or more operating systems that are current
industry standards (e.g. Linux, Windows, Apple OS).

Describe common operating systems used for software applications.

K-29
Knowledge of risk management framework and processes (e.g. methods for
assessing and mitigating risk).

Discuss risk management framework and processes.

Explain secure coding algorithms such as hashing, encryption and cryptography.

Describe tools and techniques used for modeling and documenting software
systems.

Software Development Student Learning Outcomes
Knowledge

Compare and Contrast Artificial Intelligence (AI) and Machine Learning (ML)
principles and techniques.

List common services, practices, and protocols used in the development of web
services, including the use of cookies.

Identify how to assess internal and external network systems threats and
vulnerabilities.

10

K-1
Knowledge of software development models (e.g. Waterfall Model, Spiral
Model).

Describe various software development models.

K-2
Knowledge of system design tools, methods, and techniques, including
automated systems analysis and design tools.

Describe tools, methods, and techniques used for software analysis and design.

K-18 Knowledge of the local development cycle (e.g. build, deploy, test, debug).
K-46 Knowledge of lifecycle development/steady state/end of life.

K-10
Knowledge of Regression Testing Development – how to test software using
software.

Describe automation techniques that can be applied to software testing.

K-9 Knowledge of event handling in a GUI. Describe how event-handling is implemented in a GUI (graphical user interface).

K-26

Knowledge of system and application security threats and vulnerabilities (e.g.
buffer overflow, mobile code, cross-site scripting, Procedural
Language/Structured Query Language [PL/SQL] and injections, race conditions,
covert channel, replay, return-oriented attacks, malicious code).

Identify and describe common application security vulnerabilities.

K-31
Knowledge of software related information technology (IT) security principles
and methods (e.g. modularization, layering, abstraction, data hiding,
simplicity/minimization).

Classify the application of secure coding principles and methods.

K-41 Knowledge of DevSecOps. Describe DevSecOps principles and practices.
K-48 Knowledge of how to protect data privacy through code. Explain how to protect data privacy by secure coding.

K-28
Knowledge of Privacy Impact Assessments in terms of privacy and
identity management.

Describe how Privacy Impact Assessment (PIA) tools are used to identify and
mitigate privacy risks.

K-23
Knowledge of software collaboration tools (e.g. version control, bug tracking,
continuous integration).

Describe how software tools are used to collaborate and manage the phases of
the software development lifecycle.

K-43 Knowledge of open source software.
Compare and contrast common open source frameworks and tools used for
software development.

Student Learning Outcomes

S-1
Skill in using built-in functions as well as skill in creating custom functions,
subroutines, and procedures within software using scripting languages.

S-15
Skill in using a scripting language on the server side and the client side of a
distributed program.

S-2 Skill in integrating standard object model components with server pages. Develop a server page containing integrated object model components.

S-3 Skill in conducting software debugging. Diagnose and resolve software defects using debugging tools and techniques.

S-4
Skill in creating programs that validate and process multiple inputs including
command line arguments, environmental variables, and input streams.

Design and implement applications which acquire and validate input from
various sources, including command line arguments, files, environment
variables, and input streams.

S-5
Skill in writing code in a currently supported programming language
(e.g. scripting, Java, C++, Linux, Ruby or current languages).

Develop applications which use a standard current programming language.

S-6
Skill in developing applications that can log and handle errors, exceptions, and
application faults and logging.

Design resilient applications which provide comprehensive diagnostic
information.

S-7
Skill in applying root cause analysis (RCA) techniques to solving
software/customer issues.

Apply root cause analysis techniques to identify and diagnose software defects.

S-8
Skill in the live production environment (e.g. monitoring, logging, alerting,
remote debugging).

Demonstrate familiarity and ability to work with common tools for monitoring
and diagnosing issues in production systems.

S-9
Skill in using electronic mail software (e.g. Google Gmail; IBM Notes Hot
technology; Microsoft Exchange Server Hot technology; Microsoft Outlook Hot
technology).

Demonstrate the use of different electronic mail systems.

S-10
Skill in using graphical user interface development software (e.g. Graphical user
interface GUI builder software; Graphical user interface GUI design software;
Salesforce Visualforce Hot technology).

Use Graphical User Interface (GUI) development tools to develop applications.

S-11
Skill in using object or component oriented development software (e.g. C++ Hot
technology; Document Object Model DOM Scripting; Python Hot technology;
Simple API for XML SAX).

Use component-driven development software tool to build software
components.

S-12
Skill in creating classes that use inheritance aspects of the object-oriented
paradigm.

Demonstrate the use of object-oriented features such as inheritance and
polymorphism.

S-13 Skill in using, incorporating and utilizing cookies.
Develop web applications which use common services, practices, protocols, and
cookies.

S-14
Skill in implementing programs that use local or remote databases with
standard protocols.

Implement programs that use databases with standard protocols.

S-16
Skill in evaluating and reporting software needs, constraints, analysis for
application-specific concerns.

Evaluate domain-specific needs, identify requirements, and define scope for
applications.

S-17
Skill in implementing levels of security in distributed software applications and
applets.

S-18
Skill in deploying secure software according to secure software deployment
methodologies, tools, and practices.

S-19
Skill in designing software applications that are accessible by a variety of
wireless and wired devices.

Develop applications which provide services for wired and wireless devices.

S-20 Skills such as time management, risk management. Appropriately use time and risk management skills.
S-21 Skill in incorporating user experience feedback into software. Apply iterative design techniques to the development of applications.
S-22 Skill in integrating third party open source resources into software. Integrate third-party open source components into applications.

List the phases of the software development lifecycle.

Skills

Develop a modularized, distributed application using a scripting language.

Apply secure development best practices and use standard tools to securely
deploy applications.

11

S-23
Skill in learning new and/or industry standard tools involved in the
development of software.

Evaluate and learn current and new software tools and emerging tools as they
become available.

Student Learning Outcomes

A-1
Ability to both mentor and be mentored, provide critical feedback as well as
accept critical feedback.

Perform the responsibilities of being a mentor and a mentee.

A-2
Ability to comprehend and execute both written and oral instructions by asking
clarifying questions.

A-3
Ability to effectively communicate technical concepts and constraints in written
and oral form to technical team members, stakeholders.

A-4
Ability to work effectively in multi-disciplinary teams to apply information
technology in support of organizational goals.

A-9 Ability to engage with users and understand their user experience.

A-5
Ability to write technical documentation for technical and nontechnical
audiences.

Construct technical documents for appropriate audience.

A-6
Ability to manage your own software development project activities and
deliverables in a timely and efficient manner.

Organize and schedule software projects to meet one's own deliverables
timeline.

A-7
Ability to work on team projects and demonstrate critical thinking, teamwork,
oral communications, inter-cultural appreciation, and technical and information
literacy skills.

Demonstrate effective team collaboration and communications skills for
technical and information proficiency.

A-8 Ability to research and be able to find other sources to answer the problem. Research and utilize validated data to solve the given problem.
A-10 Ability to draw on prior knowledge and experience in a new situation. Make use of prior knowledge and experience in new situations.

Operate proficiently in multi-disciplinary teams to support organizational
information technology goals.

Abilities

Demonstrate effective technical communication skills (both oral and written) to
stakeholders.

12

	Software Development KPIs for website.pdf
	KPI Sheet

	Software Development KSAs for website.pdf
	Sheet2

	Software Development SLOs.pdf
	SLO_Final

	Software Development.pdf
	Software Development

